Axis VM 13.3

Le nuove funzionalità

Indice

	Generale	3
1	Modulo REV	3
	Modifica	5
1	Mantieni vista	5
	Carichi	6
1	Pannelli di carico	6
2	Spettri di progetto	6
	Analisi	7
1	Analisi non lineare	7
2	Analisi pushover	7
3	Carichi neve	7
	Progetto e risultati	8
1	Travi virtuali	8
2	Definizione armature	8
3	Rappresentazione armature	9
4	Modifica armature	9
	Relazione	11
1	Tabella Materiali	11
2	Tabella Sezioni	11

1 Generale

1.1 Modulo REV

Interfaccia Revit (nuovo modulo REV)

Consente l'importazione di un modello da Autodesk Revit 2015 (o successivo) in AxisVM, tramite un file di passaggio (* .rae) o tramite COM convertendolo in un modello strutturale.

Import Method	Structural model	Default material		
 Overwrite Update 	Join static framework of imported objects automatically	- Material Library - Eurocode - C12/15 - C16/20	1	
Arc resolution Maxim	num deviation from arc (m) = 0.050 By angle (*) = 5			
Editing tolerance	ð [m] = 1E-5	C45/55 C50/60 PTH 25 N+F M10 PTH 25 N+F M2		
Joining objects If objects are closer than	ε [m] = 0.010	PTH 25 N+F Profi DRYFIX		

2 Modifica

2.1 Mantieni vista

Nuova opzione per mantenere inalterata la vista dopo operazioni di annullamento.

3 Carichi

3.1 Pannelli di carico

Nuovo strumento pannello di carico: creazione di pannelli di carico tramite la conferma di una selezione di domini.

Nuova opzione del pannello di carico: i carichi del pannello di carico vengono distribuiti su elementi lineari e domini, solo se si trovano nelle parti attive sotto il pannello

3.2 Spettri di progetto

Se gli spettri sono diversi nelle direzioni X e Y, possono essere specificati diversi fattori qdX e qdY. I parametri NL dell'Eurocodice sono stati aggiornati secondo NPR 9998 (Dicembre 2015)

	(nat)	ysis	<u>C</u> a	ise			
	Line	ar y	10	r seismic mass			
Parameters (Eur	ocode	[NL])			q _{dX} = 1.9 💽	q _{dY} = 1.6	٢
Spectrum (horiz	ontal)	Spectrum (ver	tical)	Torsional effect	Combination me	thods	
Different q fai	ctors in	n X and Y directi	ons	Design spec	trum		
	a.,	ref [m/s ²] = 0.4	00	<parametric< td=""><td>: shape></td><td>-</td><td></td></parametric<>	: shape>	-	
Soil condition		q _x = 1.9			S ₄ [m/s ²]	1	-
Normal		Q _Y = 1.6	8	1.425	82 CC		
		Kan = 1.2		1.200			
		Te bi = 0.1	15	0.760			
		To late 0.5	75				
		and the second second	19. MP			0.02	9
						0.01	T[s]
				0			4.000
		Te Inin 0.5	75			0.02	9 1] 4.0

4 Analisi

4.1 Analisi non lineare

L'analisi non lineare può considerare l'armatura sia nelle superfici che negli elementi lineari (travi / colonne).

4.2 Analisi pushover

L'analisi pushover può considerare l'armatura sia nelle superfici che negli elementi lineari (travi / colonne).

4.3 Carichi neve

Carichi neve: Effetti di tetti sporgenti secondo CE 1-4 7.2.1 (pressione sul lato inferiore della sporgenza).

5 Progetto e risultati

5.1 Travi virtuali

La trave virtuale integra forze di superficie perpendicolari alla sua linea e li converte in risultati della trave. L'integrazione avviene tramite i domini a cui è collegato. L'asse della trave virtuale attraversa il centro di gravità di tutte le sezioni perpendicolari. La striscia virtuale è come la trave virtuale, ma con un limite di larghezza fissato per l'intervallo di integrazione

Modello a Shell di un tubo. La trave virtuale è collegata a tutti i domini per ottenere i risultati lungo il suo sviluppo (in questo caso My)

5.2 Definizione armature

Nuovi strumenti per definire l'armatura effettiva negli elementi lineari per flessione monoassiale (trave) o flessione biassiale (colonna) senza dover accedere al progetto

5.3 Rappresentazione armature

L'armatura effettiva viene visualizzata nella rappresentazione delle sezioni trasversali in modalità wireframe

5.4 Modifica armature

E 'possibile modificare e controllare l'armatura effettiva della trave

6 Relazione

6.1 Tabella Materiali

L'indice e il nome dei materiali realmente utilizzati nel modello appare in grassetto nella tabella *Materiali*. Vedere *Formato/Mostra materiali utilizzati in grassetto*

	+	×			X					
Mate	rials									
	Name	Type	National design code	Material code	Model	E _x [N/mm ²]	E _y [N/mm ²]	v	a _T [1/*C]	p [kg/m ³]
1	C20/25	Concrete	Eurocode	EN 206	Linear	30000	30000	0.20	1E-5	2500
2	C25/30	Concrete	Eurocode	EN 205	Linear	31500	31500	0.20	1E-5	2500
3	C30/37	Concrete	Eurocode	EN 206	Linear	32800	32800	0.20	1E-5	2500

6.2 Tabella Sezioni

Nuova opzione nella Tabella *Sezioni* per visualizzare la colonna con il nome del profilo al posto o accanto all'indice della sezione trasversale.

	Concerns the second second								
	Cross-section name	Loc. [m]	Node	Nx [kN]	Vy [KN]	Vz [KN]	Tx [ktNm]	My [kNm]	Mz [kNm]
29	HE 220 B	L=0.707	_					-	
-	1	0	(30)	-1.569	-0.001	-0.367	0	0.183	-0.001
		0.707	(28)	-1.219	-0.001	-0.017	0	0.047	-0.001
30	HE 220 B	L=1.249							
		0	(20)	-8.384	0.007	-1,535	0	0.779	0.010
		1.249	(32)	-7.766	0.007	-0.914	0	-0.750	0
31	HE 220 B	L=1.249							
	1	0	(19)	-8.384	-0.007	-1.535	0	0.779	-0.010
		1.249	(31)	-7.766	-0.007	-0.914	0	-0.750	(
32	U 180	L=1.886	2						
	1	0	(17)	-0.001	0.002	-0.322	0	0.224	0.003
		1.885	(33)	-0.001	0.002	0.084	0	-0.001	-0.001
33	U 180	L=1.886							
	1	0	(33)	-0.001	-0.002	-0.084	0	-0.001	-0.001
		1.885	(18)	-0.001	-0.002	0.322	0	0.224	0.003
Ext.								_	
2	HE 220 B	0	(1)	-71.758	-0.093	-0.008	0	0.136	-0.080
7	HE 220 B	0	(11)	-71.758	0.093	-0.008	0	0.136	0.080
1	HE 220 B	2.273	(5)	5.067	0.101	-4.159	-0.002	-2.059	-0.008
0	HE 220 B	2.273	(10)	5.067	-0.101	-4.159	0.002	-2.059	0.008
20	HE 220 B	0			-0.195				
21	HE 220 B	0			0.195	-			
1	HE 220 B	2.273	(5)	5.067	0.101	-4.159	-0.002	-2.059	-0.008
6	HE 220 B	2.273	(10)	5.067	-0.101	-4,159	0.002	-2.059	0.008
26	HE 220 B	0	(23)	3.747	-0.008	5.100	0	-0.411	-0.004
21	HE 220 B	0	(24)	3.747	0.008	5.100	0	-0.411	0.004
8	HE 220 B	0				•	-0.005	•	
5	HE 220 B	0					0.005		
1	HE 220 B	2.273	(5)	5.067	0.101	-4.159	-0.002	-2.059	-0.008
6	HE 220 B	2.273	(10)	5.067	-0.101	-4,159	0.002	2.059	0.008
30	HE 220 B	0	(20)	-8.384	0.007	-1.535	0	0.779	0.010
31	HE 220 B	0	(19)	-8.384	-0.007	-1.535	0	0.779	-0.010

